副教授 | 电话:67703849 |
电子邮件:liuh(at)suibe.edu.cn |
教育背景
博士(计算机科学与技术(计算语言学)),2009,上海交通大学
学士(计算机科学与技术),2003,上海交通大学
研究兴趣
自然语言处理(语义计算、知识图谱)
主讲课程
计算机科学导论、C程序设计、Python程序设计、人工智能导论、操作系统、文本挖掘技术(研究生)
简介
刘慧,男,副教授,硕士生导师。2009年博士毕业于上海交通大学,同年进入我校担任讲师,2012年晋升为副教授,2012年3月至2023年2月担任统计与信息学院(原商务信息学院)副院长。曾获上海市教学成果奖一等奖,上海对外经贸大学优秀共产党员等称号。主要研究领域为自然语言处理,研究兴趣为语义计算及知识图谱构建。主持完成教育部人文社会科学项目1项,在IEEE TSMCB (现名IEEE Trans. Cybern.)、IJCAI、ECAI、SIGHAN、计算机研究与发展、中文信息学报等国内外重要学术刊物和会议上发表论文40余篇。
部分发表论文
Zang, J., & Liu, H*. (2024). Modeling Selective Feature Attention for Lightweight Text Matching. In IJCAI 2024 (Accepted)
Zang, J., & Liu, H*. (2024). Explanation Based Bias Decoupling Regularization for Natural Language Inference. In IJCNN 2024 (Accepted)
Zang, J., & Liu, H. (2023). Improving Text Semantic Similarity Modeling Through a 3D Siamese Network. In ECAI 2023 (pp. 2970-2977). IOS Press.
Zang, J., & Liu, H. (2023). How to Extract and Interact? Nested Siamese Text Matching with Interaction and Extraction. In International Conference on Artificial Neural Networks (pp. 523-535). Cham: Springer Nature Switzerland.
Liu, L., Wu, X., Liu, H.*, Cao, X., Wang, H., Zhou, H., & Xie, Q. (2020). A semi-supervised approach for extracting TCM clinical terms based on feature words. BMC Medical Informatics and Decision Making, 20(3), 1-7.
Hui Liu & Jianyong Duan(2017). Geometric Analysis of Concept Vectors based on Similarity Values. Lingua Sinica, December 2017, 3:12,https://doi.org/10.1186/s40655-017-0029-0
Hui Liu & Jianyong Duan (2016). An Analysis of the Relation between Similarity Positions and Attributes of Concepts by Distance Geometry, in the Proceedings of the 17th Chinese Lexical Semantics Workshop (CLSW2016), Singapore, 432-441 (最佳论文奖)
Hui Liu (2016). An Analysis of the Relatedness between Similarity Models for Words, ICIC Express Letters, 10(5), 1071-1078.
Hui Liu & Jianyong Duan (2015). Attribute Construction for Online Products by Similarity Computing. ICIC Express Letters, 9(1):99-106.
Hui Liu & Yuquan Chen (2011). Semantic similarity between complex named entities: An approach using multiple web resources. ICIC Express Letters, 5(1):71–76, 2011.
Wu, W. L., Lu, R. Z., Duan, J. Y., Liu, H., Gao, F., & Chen, Y. Q. (2010). Spoken language understanding using weakly supervised learning. Computer speech & language, 24(2), 358-382.
Hui Liu, Jinglei Zhao and Ruzhan Lu (2009), Toward the formal verification of a unification system, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 39(4), 2009.
钟茂生, 刘慧, & 刘磊. (2009). 词汇间语义相关关系量化计算方法. 中文信息学报, 23(2), 115-122.
Hui Liu & Ruzhan Lu (2008). Word Similarities based on an Ensemble Model Using Ranking SVMs, in Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2008), Vol. 3 (Workshops) , Sydney, Australia, 2008
Liu, H., Zhao, J., & Lu, R. (2008). Computing semantic similarities based on machine-readable dictionaries. In IEEE International Workshop on Semantic Computing and Systems (pp. 8-14). IEEE.
吴尉林, 陆汝占, 段建勇, 刘慧, 高峰, & 陈玉泉. (2008). 基于两阶段分类的口语理解方法. 计算机研究与发展, 45(5), 861-868.
Zhao, J., Liu, H., & Lu, R. (2007). Semantic labeling of compound nominalization in Chinese. In Proceedings of the Workshop on A Broader Perspective on Multiword Expressions (pp. 73-80).
Jiang, F., Liu, H., Chen, Y., & Lu, R. (2004). An enhanced model for Chinese word segmentation and part-of-speech tagging. In Proceedings of the Third SIGHAN Workshop on Chinese Language Processing (pp. 28-32).
Huang, L., Peng, Y., Wu, Z., Yuan, Z., Wang, H., & Liu, H. (2003). Pseudo Context-Sensitive Models for Parsing Isolating Languages: Classical Chinese—A Case Study. In Computational Linguistics and Intelligent Text Processing: 4th International Conference, CICLing 2003 Mexico City, Mexico, February 16–22, 2003 Proceedings 4 (pp. 48-51). Springer Berlin Heidelberg.
科研项目
教育部人文社会科学研究青年项目,“网络新出现命名实体的属性结构构造研究”,2013-2016,主持。
获奖情况
2011 上海对外贸易学院青年教师教学质量奖
2012 上海对外贸易学院双语教师教学质量奖
2013 上海市教学成果一等奖(排名7/8)
2017 上海对外经贸大学文明岗
2020 上海对外经贸大学教学成果特等奖(排名2/8)
2021 上海对外经贸大学优秀共产党员
2022 上海对外经贸大学优秀纪检工作者
2010年度校考核记功,2015、2018、2019、2020、2023年度校考核优秀